首页> 外文OA文献 >Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency
【2h】

Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency

机译:用于从卫星数据并行检索气溶胶光学深度的多核处理器和图形处理单元加速器:实现,性能和能效

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantitative retrieval is a growing area in remote sensing due to the rapid development of remote instruments and retrieval algorithms. The aerosol optical depth (AOD) is a significant optical property of aerosol which is involved in further applications such as the atmospheric correction of remotely sensed surface features, monitoring of volcanic eruptions or forest fires, air quality, and even climate changes from satellite data. The AOD retrieval can be computationally expensive as a result of huge amounts of remote sensing data and compute-intensive algorithms. In this paper, we present two efficient implementations of an AOD retrieval algorithm from the moderate resolution imaging spectroradiometer (MODIS) satellite data. Here, we have employed two different high performance computing architectures: multicore processors and a graphics processing unit (GPU). The compute unified device architecture C (CUDA-C) has been used for the GPU implementation for NVIDIA's graphic cards and open multiprocessing (OpenMP) for thread-parallelism in the multicore implementation. We observe for the GPU accelerator, a maximal overall speedup of 68.x for the studied data, whereas the multicore processor achieves a reasonable 7.x speedup. Additionally, for the largest benchmark input dataset, the GPU implementation also shows a great advantage in terms of energy efficiency with an overall consumption of 3.15 kJ compared to 58.09 kJ on a CPU with 1 thread and 38.39 kJ with 16 threads. Furthermore, the retrieval accuracy of all implementations has been checked and analyzed. Altogether, using the GPU accelerator shows great advantages for an application in AOD retrieval in both performance and energy efficiency metrics. Nevertheless, the multicore processor provides the easier programmability for the majority of today's programmers. Our work exploits the parallel implementations, the performance, and the energy efficiency features of GPU accelerators and multicore processors. With this paper, we attempt to give suggestions to geoscientists demanding for efficient desktop solutions.
机译:由于远程仪器和检索算法的迅速发展,定量检索是遥感领域的一个新兴领域。气溶胶光学深度(AOD)是气溶胶的重要光学特性,涉及进一步的应用,例如对遥感表面特征进行大气校正,监测火山喷发或森林大火,空气质量,甚至可以根据卫星数据进行气候变化。由于大量的遥感数据和计算密集型算法,AOD检索的计算量可能很大。在本文中,我们从中分辨率成像光谱仪(MODIS)卫星数据中介绍了AOD检索算法的两种有效实现。在这里,我们采用了两种不同的高性能计算架构:多核处理器和图形处理单元(GPU)。计算统一设备体系结构C(CUDA-C)已用于NVIDIA图形卡的GPU实现,并已用于多核实现中的线程并行性的开放式多处理(OpenMP)。对于GPU加速器,我们观察到所研究数据的最大整体加速为68.x,而多核处理器则达到了合理的7.x加速。此外,对于最大的基准输入数据集,GPU实施在能源效率方面也显示出巨大优势,总能耗为3.15 kJ,而具有1个线程的CPU为58.09 kJ和具有16个线程的38.39 kJ。此外,已经检查并分析了所有实现的检索精度。总之,使用GPU加速器在AOD检索中的应用程序在性能和能效指标方面都显示出巨大的优势。尽管如此,多核处理器为当今大多数程序员提供了更容易的可编程性。我们的工作利用了GPU加速器和多核处理器的并行实现,性能和能效特性。本文试图为要求高效台式机解决方案的地球科学家提供建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号